LeetCode 235

Abhinav Ganesh

January 30, 2024

209. Minimum Size Subarray Sum; Sliding Window

Prompt: Given an array of positive integers nums and a positive integer target, return the minimal length of a subarray whose sum is greater than or equal to target. If there is no such subarray, return 0 instead.

Constraints:

- 1. $1 \le \text{target} \le 10^9$
- 2. 1 <= nums.length <= 10^5
- 3. $1 \le \text{nums}[i] \le 10^4$

Solution: (Use Sliding Window)

Let our input array be A and positive integer target be t. Say A has n elements. Let P(B) be the proposition that the sum of all elements in subarray B is $\geq t$. Let S(A) be the set of all subarrays of A; $S(A) = \{A[i, j] | 0 \leq i < j \leq len(A)\}$ where the notation A[i, j] is the subarray of A from indices i inclusive to j exclusive. Let f be a function that returns the negative length of an inputted array. We want to find

$$max_{s \in \{s \in S(A): P(s)\}}f(s)$$

Take any $B, B' \in S(A)$ s.t. $B \in S(B')$; B is a subarray of B'. Observe the following properties:

- 1. $f(B) \ge f(B')$; the value of f for a subarray will always be greater than that of the larger array. This is because by definition of subarray $len(B) \le len(B') \implies f(B) \ge f(B')$.
- 2. $\neg P(B') \implies \neg P(B)$. The elements in *B* are a subset of the elements in *B'* by the definition of subarray. Then $\sum B \leq \sum B'$. If $\sum B' < t$ then $\sum B < t$.

We want the maximum value of $f(s) \forall s \in S(A)$ s.t. P(s). Note that

$$S(A) = \bigcup_{i=0}^{n-1} \{ \text{subarrays of A starting at index i} \}$$

Let the notation $S_i^j(A) = S(A[i:j])$ where $0 \le i < j \le len(A)$; this is the set of all subarrays of A[i:j]. Then

$$S(A) = \bigcup_{i=0}^{n-1} S_i^n(A)$$

We want to find the maximum value of f(s) across $\{s \in S(A) : P(s)\}$. This is the same as

$$\max(\{f(s)|s \in \bigcup_{i=0}^{n-1} S_i^n(A), P(s)\})$$

$$= \max(\max(\{f(s)|s \in S_0^n(A), P(s)\}), ..., \max(\{f(s)|s \in S_{n-1}^n(A), P(s)\}))$$

In other words, we can first consider all subarrays of A starting at 0, then consider all subarrays of A starting at 1, and so on.

Consider all subarrays of A starting at 0, $S_0^n(A)$. We want to optimize f, which means having the smallest possible subarray. Therefore the smallest $k_0 \ge 1$ for which $P(A[0:k_0])$ will provide the greatest value of f out of all $s \in S_0^n(A)$.

Now consider all subarrays of A starting at 1, $S_1^n(A)$. Note that for some elements $s \in S_1^n(A)$, it is also the case that $s \in S_0^n(A)$. For example, A[1:k]. We know that k_0 was chosen so that $A[0:k_0]$ is the smallest subarray starting at 0 for which $P(A[0:k_0])$ is true. Then $P(A[0:k_0-1])$ is false $\implies \forall s' \in S(A[0:k_0-1]), P(s')$ is false (described in property 2). Note that $\forall j \leq k_0 - 1, A[1:j] \in S(A[0:k_0-1])$. Then we do not need to consider any subarray A[1:j] where $j \leq k_0 - 1$ as we already know P(A[i:j]) will be false. We can let $x_0 = f(A[0:k_0])$.

Therefore, we only need to consider subarrays A[1:j] where $j \ge k_0$.

We also know that f is optimized for the smallest length array. Then for the first value $k_1 \ge k_0$ for which $P(A[1:k_1])$ is true, we know $\not\supseteq k' > k_1$ where $f(A[1:k']) > f(A[1:k_1])$, so we need not check any more subarrays starting at 1. Let $x_1 = f(A[0:k_0])$. Then $\max(f(s)|s \in \bigcup_{i=0}^1 S_i^n(A), P(s)\}) = \max(x_0, x_1)$.

We then consider all subarrays of A starting at 2, and so on and so forth until we reach n = len(A). Then $\max(f(s)|s \in \bigcup_{i=0}^{1} S_{i}^{n}(A), P(s)\}) = \max(x_{0}, x_{1}, ..., x_{n})$. This is the value we want to return.

Sliding Window

We have used a technique that is generally known as <u>Sliding Window</u>, which is commonly used in problems where one must optimize across subarrays. By eliminating many of the subarrays from consideration, we are able to avoid an $O(n^2)$ Brute Force solution and instead implement an O(n) solution (with O(1) space complexity).

In a Sliding Window problem, you only want to consider a portion of subarrays of A for which the proposition P(A) is true. Further, you want to optimize using a function f to find the subarray for which f is maximized.

In this problem, we define f to be optimal for the subarray with shortest length, and P(A) means $\sum A \ge t$.

Usually the input constraints provide a relationship between subarray and superarrays for both f and P. In this case, given any subarray A and superarray A', $f(A) \leq f(A')$. Further, if $\neg P(A')$ then $\neg P(A')$. (Let a "superarray" A' of A be an array for which A is a subarray).

These relationships are useful because they help us eliminate certain subarrays from consideration. We only want to consider new subarrays S' s.t. P(S') is true and $f(S') > f(S) \forall S$ for which we currently know P(S) is true.

For example, given an array S for which we knew P(S) was false, we eliminated all subarrays of S for consideration because in this question $\neg P(\operatorname{array}) \implies \neg P(\operatorname{subarray})$. Given an array for which P(S) was true, we also ignored all superarrays as in this question $f(\operatorname{array}) > f(\operatorname{superarray})$.

Note that the relationships between subarrays and superarrays for f and P are usually specific to the problem being asked.