
LeetCode 235

Abhinav Ganesh

January 30, 2024

209. Minimum Size Subarray Sum; Sliding Window

Prompt: Given an array of positive integers nums and a positive integer target, return the
minimal length of a subarray whose sum is greater than or equal to target. If there is no
such subarray, return 0 instead.

Constraints:

1. 1 <= target <= 109

2. 1 <= nums.length <= 105

3. 1 <= nums[i] <= 104

Solution: (Use Sliding Window)

Let our input array be A and positive integer target be t. Say A has n elements. Let P (B)
be the proposition that the sum of all elements in subarray B is ≥ t. Let S(A) be the set
of all subarrays of A; S(A) = {A[i, j]|0 ≤ i < j ≤ len(A)} where the notation A[i, j] is the
subarray of A from indices i inclusive to j exclusive. Let f be a function that returns the
negative length of an inputted array. We want to find

maxs∈{s∈S(A):P (s)}f(s)

Take any B,B′ ∈ S(A) s.t. B ∈ S(B′); B is a subarray of B′. Observe the following
properties:

1. f(B) ≥ f(B′); the value of f for a subarray will always be greater than that of the larger
array. This is because by definition of subarray len(B) ≤ len(B′) =⇒ f(B) ≥ f(B′).

2. ¬P (B′) =⇒ ¬P (B). The elements in B are a subset of the elements in B′ by the
definition of subarray. Then

∑
B ≤

∑
B′. If

∑
B′ < t then

∑
B < t.

1



We want the maximum value of f(s) ∀ s ∈ S(A) s.t. P (s). Note that

S(A) =
n−1⋃
i=0

{subarrays of A starting at index i}

Let the notation Sj
i (A) = S(A[i : j]) where 0 ≤ i < j ≤ len(A); this is the set of all subarrays

of A[i : j]. Then

S(A) =
n−1⋃
i=0

Sn
i (A)

We want to find the maximum value of f(s) across {s ∈ S(A) : P (s)}. This is the same as

max({f(s)|s ∈
n−1⋃
i=0

Sn
i (A), P (s)})

= max(max({f(s)|s ∈ Sn
0 (A), P (s)}), ...,max({f(s)|s ∈ Sn

n−1(A), P (s)}))
In other words, we can first consider all subarrays of A starting at 0, then consider all sub-
arrays of A starting at 1, and so on.

Consider all subarrays of A starting at 0, Sn
0 (A). We want to optimize f , which means

having the smallest possible subarray. Therefore the smallest k0 ≥ 1 for which P (A[0 : k0])
will provide the greatest value of f out of all s ∈ Sn

0 (A).

Now consider all subarrays of A starting at 1, Sn
1 (A). Note that for some elements s ∈ Sn

1 (A),
it is also the case that s ∈ Sn

0 (A). For example, A[1 : k]. We know that k0 was chosen so
that A[0 : k0] is the smallest subarray starting at 0 for which P (A[0 : k0]) is true. Then
P (A[0 : k0 − 1]) is false =⇒ ∀ s′ ∈ S(A[0 : k0 − 1]), P (s′) is false (described in property
2). Note that ∀ j ≤ k0 − 1, A[1 : j] ∈ S(A[0 : k0 − 1]). Then we do not need to consider any
subarray A[1 : j] where j ≤ k0 − 1 as we already know P (A[i : j]) will be false. We can let
x0 = f(A[0 : k0]).
Therefore, we only need to consider subarrays A[1 : j] where j ≥ k0.
We also know that f is optimized for the smallest length array. Then for the first value
k1 ≥ k0 for which P (A[1 : k1]) is true, we know ̸∃ k′ > k1 where f(A[1 : k′]) > f(A[1 : k1]),
so we need not check any more subarrays starting at 1. Let x1 = f(A[0 : k0]). Then
max(f(s)|s ∈

⋃1
i=0 S

n
i (A), P (s)})) = max(x0, x1).

We then consider all subarrays of A starting at 2, and so on and so forth until we reach
n = len(A). Then max(f(s)|s ∈

⋃1
i=0 S

n
i (A), P (s)})) = max(x0, x1, ..., xn). This is the value

we want to return.

Sliding Window

We have used a technique that is generally known as Sliding Window, which is commonly
used in problems where one must optimize across subarrays. By eliminating many of the

2



subarrays from consideration, we are able to avoid an O(n2) Brute Force solution and instead
implement an O(n) solution (with O(1) space complexity).

In a Sliding Window problem, you only want to consider a portion of subarrays of A for
which the proposition P (A) is true. Further, you want to optimize using a function f to find
the subarray for which f is maximized.
In this problem, we define f to be optimal for the subarray with shortest length, and P (A)
means

∑
A ≥ t.

Usually the input constraints provide a relationship between subarray and superarrays for
both f and P . In this case, given any subarray A and superarray A′, f(A) ≤ f(A′). Further,
if ¬P (A′) then ¬P (A′). (Let a ”superarray” A′ of A be an array for which A is a subarray).

These relationships are useful because they help us eliminate certain subarrays from consid-
eration. We only want to consider new subarrays S ′ s.t. P (S ′) is true and f(S ′) > f(S) ∀S
for which we currently know P (S) is true.

For example, given an array S for which we knew P (S) was false, we eliminated all sub-
arrays of S for consideration because in this question ¬P (array) =⇒ ¬P (subarray).
Given an array for which P (S) was true, we also ignored all superarrays as in this ques-
tion f(array) > f(superarray).

Note that the relationships between subarrays and superarrays for f and P are usually
specific to the problem being asked.

3


